Principal Component Analysis (PCA)-based Massive-MIMO Channel Feedback

نویسندگان

  • Jingon Joung
  • Ernest Kurniawan
  • Sumei Sun
چکیده

Channel-state-information (CSI) feedback methods are considered, especially for massive or very large-scale multipleinput multiple-output (MIMO) systems. To extract essential information from the CSI without redundancy that arises from the highly correlated antennas, a receiver transforms (sparsifies) a correlated CSI vector to an uncorrelated sparse CSI vector by using a Karhunen-Loève transform (KLT) matrix that consists of the eigen vectors of covariance matrix (CM) of CSI vector and feeds back the essential components of the sparse CSI, i.e., a principal component analysis method. A transmitter then recovers the original CSI through the inverse transformation of the feedback vector. Herein, to obtain the CM at transceiver, we derive analytically the CM of spatially correlated Rayleigh fading channels based on its statistics including transmit antennas’ and receive antennas’ correlation matrices, channel variance, and channel delay profile. With the knowledge of the channel statistics, the transceiver can readily obtain the CM and KLT matrix. Compression feedback error and bit-error-rate performance of the proposed method are analyzed. Numerical results verify that the proposed method is promising, which reduces significantly the feedback overhead of the massive-MIMO systems with marginal performance degradation from full-CSI feedback (e.g., feedback amount reduction by 80%, i.e., 1 5 of original CSI, with spectral efficiency reduction by only 2%). Furthermore, we show numerically that, for a given limited feedback amount, we can find the optimal number of transmit antennas to achieve the largest spectral efficiency, which is a new design framework.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A limited feedback scheme for massive MIMO systems based on principal component analysis

Massive multiple-input multiple-output (MIMO) is becoming a key technology for future 5G cellular networks. Channel feedback for massive MIMO is challenging due to the substantially increased dimension of the channel matrix. This motivates us to explore a novel feedback reduction scheme based on the theory of principal component analysis (PCA). The proposed PCA-based feedback scheme exploits th...

متن کامل

Semi-Blind Channel Estimation based on subspace modeling for Multi-user Massive MIMO system

‎Channel estimation is an essential task to fully exploit the advantages of the massive MIMO systems‎. ‎In this paper‎, ‎we propose a semi-blind downlink channel estimation method for massive MIMO system‎. ‎We suggest a new modeling for the channel matrix subspace. Based on the low-rankness property, we have prposed an algorithm to estimate the channel matrix subspace. In the next step, using o...

متن کامل

Correlated Channel Feedback Method using Principal Component Analysis

A receiver transforms correlated channel state information (CSI) to an uncorrelated sparse CSI vector by using a principal component analysis (PCA), and feeds it back to a transmitter. The PCA extracts essential information from the CSI without redundancy that arises from the highly correlated antennas. The transmitter then recovers the original CSI through the inverse transformation of the fee...

متن کامل

PCA Application in Channel Estimation in MIMO-OFDM System

Initial estimation is a considerable issue in channel estimation techniques, since all of the following processes depends on it, which in this paper its improvement is discussed. Least Square (LS) method is a common simple way to estimate a channel initially but its efficiency is not as significant as more complex approaches. It is possible to enhance channel estimation performance by using som...

متن کامل

Exploiting Channel Reciprocity in Massive MIMO

• Massive MIMO prototype  64 Antenna array supported by 16 ExpressMIMO2 cards  Centralized high end computing engine • Massive MIMO key challenges  Acquisition of channel information at transmitter (CSIT);  Pilot contamination;  Fast and distributed coherent signal processing;  Hardware impairment, etc. • Time Division Duplexing (TDD)  Use TDD channel reciprocity for massive MIMO to ease...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1512.05068  شماره 

صفحات  -

تاریخ انتشار 2015